quantum-entropy
quantum-entropy:

science:

While we’re on the topic of quantum physics, here is a nifty illustration from Wikipedia of the elementary particles of the Standard Model. “Atom” means indivisible, as atoms were originally thought to be the smallest parts of the universe, the bits that compose everything else but are not themselves composed of smaller particles. As physics advanced, scientists found that atoms consisted of even smaller particles, and these are the smallest, atomic (indivisible) parts of reality as far as we know today, according to the most accurate and experimentally verified theory of physics as of 2014. Notably missing is the graviton, a particle hypothesized to be the carrier of the elementary force of gravitation, but as of today physicists have been unable to create a theory that unifies the three forces of the Standard Model—the electromagnetic force, the strong and the weak nuclear force—with gravity.
The fact that these particles are regarded as elementary doesn’t necessarily mean that they aren’t composed of even smaller particles. It could be that in the future, likely when we can study even higher energies than those in our most powerful particle accelerators—big machines that collide particles at enormous velocities, generating extreme energies in order, basically, to see what happens, what comes of the collision—we will discover that these particles are composed of even smaller constituents. But as it stands right now, these are the smallest things we know exist, and as of now, based on the information we possess from experiments and mathematical theories, we think they’re indivisible. Nothing, as far as we know, is smaller than those particles up there.
Many hypotheses have been put forth which bring further or smaller elementary particles into the fray, notably string theory, but these are so far only mathematical fantasies, hypotheses which have yet to be tested and verified. Science is a process, not an end goal.
If you’re missing the familiar protons and neutrons, they are composed of quarks, held together by the strong nuclear force, which is mediated by the gluon. The electron, however, swirling about the atomic nucleus, is believed to be elementary. Perhaps one day we’ll peek further into the depths of the quantum world and discover smaller things, but that’s where it stands right now.
The pre-Socratic philosopher Democritus is often credited as the father of atomism, the theory that everything is composed of tiny, tiny things that are themselves indivisible and indestructible. This view is, on the face of it, a lucky guess that hints at modern physics; on the other hand, Democritus imagined atoms as solids; some of them could lock together with hooks and become very durable, like iron, while others were slippery and constantly in motion, like water or air. Of course, the Ancient Greeks had no way of investigating this; modern technology and high energies are required to observe the atomic and subatomic world.

ahh, it’s so satisfying to see Higgs up there in full colour, no longer greyed out staying “theoretical”

quantum-entropy:

science:

While we’re on the topic of quantum physics, here is a nifty illustration from Wikipedia of the elementary particles of the Standard Model. “Atom” means indivisible, as atoms were originally thought to be the smallest parts of the universe, the bits that compose everything else but are not themselves composed of smaller particles. As physics advanced, scientists found that atoms consisted of even smaller particles, and these are the smallest, atomic (indivisible) parts of reality as far as we know today, according to the most accurate and experimentally verified theory of physics as of 2014. Notably missing is the graviton, a particle hypothesized to be the carrier of the elementary force of gravitation, but as of today physicists have been unable to create a theory that unifies the three forces of the Standard Model—the electromagnetic force, the strong and the weak nuclear force—with gravity.

The fact that these particles are regarded as elementary doesn’t necessarily mean that they aren’t composed of even smaller particles. It could be that in the future, likely when we can study even higher energies than those in our most powerful particle accelerators—big machines that collide particles at enormous velocities, generating extreme energies in order, basically, to see what happens, what comes of the collision—we will discover that these particles are composed of even smaller constituents. But as it stands right now, these are the smallest things we know exist, and as of now, based on the information we possess from experiments and mathematical theories, we think they’re indivisible. Nothing, as far as we know, is smaller than those particles up there.

Many hypotheses have been put forth which bring further or smaller elementary particles into the fray, notably string theory, but these are so far only mathematical fantasies, hypotheses which have yet to be tested and verified. Science is a process, not an end goal.

If you’re missing the familiar protons and neutrons, they are composed of quarks, held together by the strong nuclear force, which is mediated by the gluon. The electron, however, swirling about the atomic nucleus, is believed to be elementary. Perhaps one day we’ll peek further into the depths of the quantum world and discover smaller things, but that’s where it stands right now.

The pre-Socratic philosopher Democritus is often credited as the father of atomism, the theory that everything is composed of tiny, tiny things that are themselves indivisible and indestructible. This view is, on the face of it, a lucky guess that hints at modern physics; on the other hand, Democritus imagined atoms as solids; some of them could lock together with hooks and become very durable, like iron, while others were slippery and constantly in motion, like water or air. Of course, the Ancient Greeks had no way of investigating this; modern technology and high energies are required to observe the atomic and subatomic world.

ahh, it’s so satisfying to see Higgs up there in full colour, no longer greyed out staying “theoretical”

quantum-entropy
astrodidact:

Since the spectacular discovery of the Higgs boson in 2012, physicists at the Large Hadron Collider (LHC), the gigantic particle accelerator outside Geneva, have suffered a bit of a drought when it comes to finding new particles. In a welcome relief, the LHCb collaboration, who run one of four large experiments at the LHC, have announced one of the most genuinely exciting observations to come out of the 27km super-collider so far – an exotic particle that cannot be explained by current theories.
In the early 1930s physicists had a clean picture of the subatomic particles that make up our world. Every known atom has a tiny nucleus at its heart surrounded by a cloud of electrons, and each nucleus was made out of varying numbers of protons and neutrons. However, as the decades wore on a number of new, and somewhat unwelcome, particles were discovered, at first in detectors studying particles from outer space and later in particle-collider experiments. By the 1950s, dozens of apparently elementary particles had been discovered, causing frustration among physicists who often brandish an inability to memorise a list of facts as a badge of honour.
The famous physicist Enrico Fermi perhaps best expressed the mood of his colleagues in an infamous remark: “Young man, if I could remember the names of these particles, I would have been a botanist.” Help came in the 1950s when physicists came up with a new model that explained most of these particles as being made up of a small number of truly elementary particles. Borrowing a line from James Joyce’s Finnegans Wake (a book that is even harder to understand than quantum field theory), Murray Gell-Mann dubbed these new particles “quarks”.
By the late 1960s the existence of quarks had been verified experimentally. We now know that there are six in total – the up, down, strange, charm, bottom and top quarks, along with six antiquarks (their anti-matter copies). The quark model neatly explained all these peculiar particles. Protons, neutrons and many others besides are made of three quarks, belonging to a family known as baryons. Alternatively, a quark and an antiquark can pair up to form a meson.
Since then the quark model has been extremely successful, and is now a cornerstone of our understanding of particle physics. It was only at the turn of the millennium that some strange results started to suggest that the model might be incomplete. Until 2003 quarks had only been seen in twos or threes, but then a number of particles that looked like combinations of four quarks started to reveal themselves.
Read more:
http://m.phys.org/news/2014-04-quirky-quark-combination-exotic-particle.html#jCp
http://www.geek.com/science/lhc-proves-another-new-particle-the-exotic-hadron-1590753/

astrodidact:

Since the spectacular discovery of the Higgs boson in 2012, physicists at the Large Hadron Collider (LHC), the gigantic particle accelerator outside Geneva, have suffered a bit of a drought when it comes to finding new particles. In a welcome relief, the LHCb collaboration, who run one of four large experiments at the LHC, have announced one of the most genuinely exciting observations to come out of the 27km super-collider so far – an exotic particle that cannot be explained by current theories.

In the early 1930s physicists had a clean picture of the subatomic particles that make up our world. Every known atom has a tiny nucleus at its heart surrounded by a cloud of electrons, and each nucleus was made out of varying numbers of protons and neutrons. However, as the decades wore on a number of new, and somewhat unwelcome, particles were discovered, at first in detectors studying particles from outer space and later in particle-collider experiments. By the 1950s, dozens of apparently elementary particles had been discovered, causing frustration among physicists who often brandish an inability to memorise a list of facts as a badge of honour.

The famous physicist Enrico Fermi perhaps best expressed the mood of his colleagues in an infamous remark: “Young man, if I could remember the names of these particles, I would have been a botanist.” Help came in the 1950s when physicists came up with a new model that explained most of these particles as being made up of a small number of truly elementary particles. Borrowing a line from James Joyce’s Finnegans Wake (a book that is even harder to understand than quantum field theory), Murray Gell-Mann dubbed these new particles “quarks”.

By the late 1960s the existence of quarks had been verified experimentally. We now know that there are six in total – the up, down, strange, charm, bottom and top quarks, along with six antiquarks (their anti-matter copies). The quark model neatly explained all these peculiar particles. Protons, neutrons and many others besides are made of three quarks, belonging to a family known as baryons. Alternatively, a quark and an antiquark can pair up to form a meson.

Since then the quark model has been extremely successful, and is now a cornerstone of our understanding of particle physics. It was only at the turn of the millennium that some strange results started to suggest that the model might be incomplete. Until 2003 quarks had only been seen in twos or threes, but then a number of particles that looked like combinations of four quarks started to reveal themselves.

Read more:

http://m.phys.org/news/2014-04-quirky-quark-combination-exotic-particle.html#jCp

http://www.geek.com/science/lhc-proves-another-new-particle-the-exotic-hadron-1590753/